VULCOFAC TAIC-70

04.2007

- **Composition:**

 . **Active ingredient:**
 . Triallyl isocyanurate
 . **Formula:** \(\text{C}_{12}\text{H}_{15}\text{N}_{3}\text{O}_{3} \)

 ![Chemical Structure](image)

 . **N° CAS:** 1025 – 15 – 6
 . **N° EINECS:** 213 – 834 – 7

- **Supplier:**

 . **Origin:** Safic-Alcan UK
 . **Availability:** regularly available

- **Function:**

 . **Main function:** Crosslinking agent for peroxide cure elastomers
 . **Compatibility:**
 . good compatibility with:
 - EPDM
 - FKM
 - CPE
 - Q
 - EVA
 - Vamac
 - HNBR

 . **Final uses:**
 . fire resistant cable sheathing
 . cable insulations
 . gaskets
- **Synonyms**:
 - 1,3,5 – triallyl isocyanurate
 - 1,3,5 – triallyl isocyanuric acid
 - Triallyl – s – triazine –2,4,6 – trione
 - Isocyanuric acid triallyl ester
 - 1,3,5 – tri – 2 propenyl –1,3,5 triazine – 2,4,6 - trione

- **Characteristics**:
 - Reactive polyfunctional triazine
 - Tri functional allylic monomer
 - the effectiveness of allylic crosslinking coagent is much more superior to vinyl compound (because radicals created in allylic compounds are stabilized by the allylic resonance)
 - It has a thermally stable triazine ring
 - It is used as crosslinking agent (co activator) for peroxide or radiation crosslinking elastomers
 - TAIC cured vulcanisaes show improved:
 - crosslinking density (higher modulus, higher hardness)
 - compression set (very low compression set)
 - lower compound viscosity
 - better oil, fuel and chemical resistance
 - heat resistance (because of the triazine ring)
 - TAIC has minimal effect on scorch compared to coagents like TMPTMA, ZDMA, HVA 2
 - TAIC enhances the electrical properties of elastomer
 - TAIC improved also resistance to hydrolysis and weathering
 - Liquid above 27 °C
 - At low temperatures (below 10 °C), the dry liquid tends to crystallise and depending on the storage conditions, the state of aggregation may change which leads to caking of the powder; the product will easily revert to a free-flowing powder by mechanical influence
 - To maintain the physical form of the product, it is recommended to store the dry liquid at temperature between 10 and 20 °C
. Level range : from 0.5 to 4 phr of active TAIC
 ✤ as dosage of peroxide and co activator, we recommend approximately 2:1

. In FKM, the standard level of TAIC is 3 phr
 ✤ a lower level of TAIC will result in lower modulus and hardness and higher elongation with a minimal impact on compression set
 ✤ higher levels of TAIC, up to 5 phr will increase modulus and hardness, modestly improve compression set and increase the flow

. In polyolefins, TAIC offers a superior insolubility to solvents and the tensile strength at high temperature could be improved

. In CPE, TAIC is effective modifier to heat resistance with increasing of crosslinking density (TAIC acts as an acceptor of HCI which is involved from CPE)

. In EVA, TAIC is the most effective coagent for crosslinking EVA
 ✤ the effectiveness of crosslinking coagent which acts in peroxide crosslinking of EVA is as follow:
 \[\text{TAIC} = \text{TAC} > \text{TMPTMA} > \text{EGDMA} \]

. In EPDM, TAIC preferably contributes to promote crosslinking rate and also to improve its heat resistance, compression set and abrasion resistance

. In HNBR/HXNBR, TAIC at a level of 1.5 phr can be used

. TAIC is effective to improve of crosslink density in the vulcanisation of millable polyurethane

. It is less reactive than other vinyl type monomers

. Other functions:
 ✤ crosslinking agent for plastic
 ✤ intermediate for flame retardant

. Raw materials:
 ✤ cyanuric chloride

- **Typical formulations:**

\[
\begin{array}{ccc}
1 / & - \text{FKM (Viton GFLT)} & 100 \text{ phr} \\
& - \text{ZnO} & 3 \\
& - \text{MT Black N 990} & 30 \\
& - \text{TAIC} & 3 \\
& - \text{Luperox 101 XL} & 3
\end{array}
\]
<table>
<thead>
<tr>
<th></th>
<th>Component</th>
<th>Amount (phr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CPE</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Barium sulfate</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Titanium dioxide</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Calcium silicate</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>TAIC</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Paraffin wax</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Chlorinated paraffin</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2,5-dimethyl hexane peroxide</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EVA</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Stearic acid</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Carbon black</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>ZnO</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>TAIC</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Dicumyl peroxide</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>CM</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Lead dispersion</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Carbon black N550</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>TOTM</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>TAIC</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Perkdox 17/40</td>
<td>7</td>
</tr>
</tbody>
</table>
- **Technical Specifications**:
 - **Appearance**: White / Off white powder
 - **Ash residue**: 27 - 33 %
 - **Molecular mass (active ingredient)**: 249.27 g / mol
 - **Density 15 °C (active ingredient)**: 1.17
 - **Active substance (active ingredient)**: 98 - 100 %
 - **Viscosity 25 °C (active ingredient)**: 230 mPas
 - **Bromine value (active ingredient)**: 183 - 188
 - **Melting point (active ingredient)**: 23 - 25 °C
 - **Boiling point (active ingredient)**: 149-152 °C
 - **Purity (active ingredient)**: 90 min %
 - **Acid value (active ingredient)**: < 1
 - **Solubility**:
 - **Packaging**: 20 kg cardboard box
 - **Shelf life**: 3 months

- **Dangers**:
 - **Handling risk**: R 22 Harmful if swallowed
 - **Transport Risk**: no danger